
Gigapixel	Scientific	Image	Rendering	
	
Sponsor Information:	 Trent	Hare	

USGS,	Flagstaff,	AZ	
thare@usgs.gov

Project Description		
A gigapixel image is composed of one billion pixels. That’s 1000 times the image data captured
by a 1 megapixel digital camera. Many scientific images are 10s or 100s of gigapixels in size.
A recent image data set was so huge that if it was printed at 300 dpi it would fill a football
stadium!

While the amount of pixel data is one issue, another is how pixels are represented. Scientific
imagery often contains more bands than the familiar Red, Green, and Blue and color data may
be represented in higher bit depth than the familiar 8 bits per band used in most consumer
computing applications.

The problem this project considers is how you do you quickly and accurately view
images (i.e. downsampling) of such scale and complexity?

One way to approach the problem is using stochastic sampling technique, where only some of a
image is sampled to create a reduced representation. In a previous project we explored this
technique with extremely encouraging (but preliminary) results. In this project you will build on
that work by:

1. Improving on the flexibility (and perhaps performance) of the sampling process,
2. Improving on our understanding and capabilities to tune image “quality” versus speed,
3. Developing a library extension that makes this technique available to GDAL (a popular

scientific imaging library) users,
4. Developing a high performance, threaded image viewer based on this technique, which

continues to improve image quality as it sits “idle.”

The goal of this project is to significantly improve the speed with which scientists are able to
manipulate and examine huge scientific image sets. Questions: Can the reader be generalized
such that all formats are supported or do changes need to be made per format and can the
quality/speed be optimized automatically by the reader for each image?

Knowledge, skills and expertise
required for this project	

• In-depth	understanding	of	data-structures	
• C/C++	(for	GDAL,	GDAL’s	API),	potentially	Python	
(Numpy,	PyQT	for	the	viewer	TuiView).	

• OpenGL	(which	can	be	picked	up	on	the	way)	
Equipment Requirements	 • Access	to	unix,	Windows,	and/or	OS	X	

Deliverables:	 Github	code	base	implementing	solution,	
Documentation	and	test	cases.	Initiate	pushing	the	
stochastic	reader	into	GDAL’s	source	(I	can	help	with	
this	as	it	might	need	funding).	
	 	

	

